找回密码
 骑士注册

QQ登录

微博登录


值得收藏的 27 个机器学习的小抄

2017-08-05 11:09    评论: 1 收藏: 4    

机器学习Machine Learning有很多方面,当我开始研究学习它时,我发现了各种各样的“小抄”,它们简明地列出了给定主题的关键知识点。最终,我汇集了超过 20 篇的机器学习相关的小抄,其中一些我经常会翻阅,而另一些我也获益匪浅。这篇文章里面包含了我在网上找到的 27 个小抄,如果你发现我有所遗漏的话,请告诉我。

机器学习领域的变化是日新月异的,我想这些可能很快就会过时,但是至少在 2017 年 6 月 1 日时,它们还是很潮的。

如果你喜欢这篇文章,那就分享给更多人,如果你想感谢我,就到原帖地址点个赞吧。

机器学习

这里有一些有用的流程图和机器学习算法表,我只包括了我所发现的最全面的几个。

神经网络架构

来源: http://www.asimovinstitute.org/neural-network-zoo/

神经网络公园

微软 Azure 算法流程图

来源: https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-algorithm-cheat-sheet

用于微软 Azure 机器学习工作室的机器学习算法

SAS 算法流程图

来源: http://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-algorithm-use/

SAS:我应该使用哪个机器学习算法?

算法总结

来源: http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/

机器学习算法指引

来源: http://thinkbigdata.in/best-known-machine-learning-algorithms-infographic/

 

已知的机器学习算法哪个最好?

算法优劣

来源: https://blog.dataiku.com/machine-learning-explained-algorithms-are-your-friend

123下一页
查看其它分页:

最新评论

我也要发表评论

hello_linux [Chrome 51.0|Windows 7] 2017-08-14 22:44 回复
多谢分享

LCTT 译者

共计翻译: 2 篇 | 共计贡献: 1118
贡献时间:2014-07-26 -> 2017-08-16
访问我的 LCTT 主页 | 在 GitHub 上关注我

收藏

返回顶部

分享到微信

打开微信,点击顶部的“╋”,
使用“扫一扫”将网页分享至微信。